A Terracini lemma for osculating spaces with applications to Veronese surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Terracini Lemma for osculating spaces with applications to Veronese surfaces

Here we present a partial generalization to higher order osculating spaces of the classical Lemma of Terracini on ordinary tangent spaces. As an application, we investigate the secant varieties to the osculating varieties to the Veronese embeddings of the projective plane. AMS Subject Classification: 14N05.

متن کامل

Osculating spaces to secant varieties

We generalize the classical Terracini’s Lemma to higher order osculating spaces to secant varieties. As an application, we address with the so-called Horace method the case of the d-Veronese embedding of the projective 3-space. A.M.S. Math. Subject Classification (2000): 14N05.

متن کامل

Spaces of Pencils, Grassmann Spaces, and Generalized Veronese Spaces

In this paper we construct several examples of partial linear spaces. First, we define two algebraic structures, namely the spaces of k-pencils and Grassmann spaces for vector spaces over an arbitrary field. Then we introduce the notion of generalized Veronese spaces following the definition presented in the paper [8] by Naumowicz and Prażmowski. For all spaces defined, we state the conditions ...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

A Moebius characterization of Veronese surfaces in S

LetMm be an umbilic-free submanifold in Sn with I and II as the first and second fundamental forms. An important Moebius invariant forMm in Moebius differential geometry is the so-calledMoebius formΦ, defined byΦ = −ρ−2 ∑i,α{Hα ,i +∑j (IIα ij −HαIij )ej (log ρ)}ωi⊗ eα , where {ei} is a local basis of the tangent bundle with dual basis {ωi}, {eα} is a local basis of the normal bundle, H = ∑α Heα...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2005

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2004.06.005